Global atmospheric chemistry: Integrating over fractional cloud cover

نویسندگان

  • Jessica L. Neu
  • Michael J. Prather
  • Joyce E. Penner
چکیده

[1] A new approach defined here allows for the averaging of photochemistry over complex cloud fields within a grid square and can be readily implemented in current global models. As diagnosed from observations or meteorological models, fractional cloud cover with many overlying cloud layers can generate hundreds to thousands of different cloud profiles per grid square. We define a quadrature-based method, applied here to the problem of averaging photolysis rates over this range of cloud patterns, which opens new opportunities for modeling in-cloud chemistry in global models. We select up to four representative cloud profiles, optimizing the selection and weighting of each to minimize the difference in photolysis rates when compared with the integration over the entire set of cloud distributions. To implement our algorithm, we adapt the UCI fast-JX photolysis code to the cloud statistics from the ECMWF forecast model at T42L40 resolution. For the tropics and midlatitudes, grid-square-averaged photolysis rates for O3, NO2, and NO3 using four representative atmospheres differ by at most 3.2% RMS from rates averaged over the hundreds or more cloudy atmospheres derived from a maximum-random overlap scheme. Further, bias errors in both the free troposphere and the boundary layer are less than 1%. Similar errors are shown to be 10–20% for current approximation methods. Errors in the quadrature method are less than the uncertainty in the choice of maximum-random overlap schemes. We apply the method to the averaging of photochemistry over different cloud profiles and outline extensions to heterogeneous cloud chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Can periodicity in low altitude cloud cover be induced by cosmic ray variability in the extragalactic shock model?

Variation in high energy cosmic rays (HECRs) has been proposed to explain a 62 My periodicity in terrestrial fossil biodiversity. It has been suggested that the infall of our galaxy toward the Virgo cluster could generate an extragalactic shock, accelerating charged particles and exposing the earth to a flux of high energy cosmic rays (HECRs). The oscillation of the Sun perpendicular to the gal...

متن کامل

Comparison of Operational Cloud Properties Derived from Gome/ers-2 and Msg/seviri Data

We focus on the retrieval of cloud properties appropriate for trace gas retrieval from sun-normalized UV/VIS backscatter spectra obtained from the Global Ozone Monitoring Experiment (GOME) on-board ERS-2. A data fusion technique is applied to calculate the fractional cloud cover of GOME footprints from GOME’s Polarization Measurement Devices (PMDs). Furthermore, cloudtop albedo and cloud-top he...

متن کامل

Unified shallow-deep convection scheme

Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Atmospheric Chemistry and Physics Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Abstract Co...

متن کامل

Impact of Ingesting Satellite-Derived Cloud Cover into the Regional Atmospheric Modeling System

This study investigates the extent to which assimilating high-resolution remotely sensed cloud cover into the Regional Atmospheric Modeling System (RAMS) provides an improved regional diagnosis of downward shortand longwave surface radiation fluxes and precipitation. An automatic procedure was developed to derive highresolution (4 km 3 4 km) fields of fractional cloud cover from visible band Ge...

متن کامل

Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling

We present the new scavenging scheme SCAV, simulating the removal of trace gases and aerosol particles by clouds and precipitation in global atmospheric chemistry models. The scheme is quite flexible and can be used for various purposes, e.g. long term chemistry simulations as well as detailed cloud and precipitation chemistry calculations. The presence of clouds can substantially change the ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007